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Quasistatic fractures in brittle media and iterated conformal maps
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We study the geometrical characteristic of quasistatic fractures in brittle media, using iterated conformal
maps to determine the evolution of the fracture pattern. This method allows an efficient and accurate solution
of the Laméequations without resorting to lattice models. Typical fracture patterns exhibit increased ramifi-
cation due to the increase of the stress at the tips. We find the roughness exponent of the experimentally
relevant backbone of the fracture pattern, it crosses over from about 0.5 for small scales to about 0.75 for large
scales. We propose that this crossover reflects the increased ramification of the fracture pattern.
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A considerable amount of theoretical work@1–3# on frac-
ture in brittle media is based on attempts to solve the eq
tion of motion for an isotropic elastic body in the continuu
limit

r
]2u

dt2
5~l1m!“~“•u!1m¹2u. ~1!

Hereu is the field describing the displacement of each m
point from its location in an unstrained body andr is the
density. The constantsm and l are the Lame´ constants. In
terms of the displacement field the elastic strain tenso
defined as

e i j [
1

2 S ]ui

]xj
1

]uj

]xi
D . ~2!

For the development of a crack the important object is
stress tensor, which in linear elasticity is written as

s i j [ld i j (
k

ekk12me i j . ~3!

When the stress component, which is transverse to the in
face of a crack, exceeds a threshold valuesc , the crack can
develop. When the external load is such that the transv
stress exceeds only slightly the threshold value, the cr
develops slowly, and one can neglect the second time de
tive in Eq. ~1!. This is the quasistatic limit, in which afte
each growth event one needs to recalculate the strain fiel
solving the Lame´ equation

~l1m!“~“•u!1m¹2u50. ~4!

In many previous works the problem was approached
discretizing Eqs.~1! and~4! on a lattice@4–7#. In this paper
we offer a different approach based on iterated confor
maps, this method turned out to be very useful in the con
of fractal growth patterns@8–11# and it appears advanta
geous also for the present problem.

*Also at Department of Physics, Emory University, Atlanta, G
1063-651X/2002/65~4!/045101~4!/$20.00 65 0451
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Although we can develop the approach in the full gen
ality of Eq. ~4!, for the sake of clarity in this paper we wil
consider mode III fracturing for which a three-dimension
elastic medium is subjected to a finite shear stressszy→s`

asy→6`. Such an applied stress will create a displacem
field uz(x,y), ux50, uy50 in the medium. Despite the me
dium being three dimensional, therefore, the calculation
the strain and stress tensors are two dimensional.

We can describe a crack of arbitrary shape by its interf
x(s), wheres is the arc length, which is used to parametri
the contour. We wish to develop a quasistatic model@12,13#
for the time development of this fracture in which discre
events advance the interface with a normal velocity

vn~s!5a~ uszt~s!u2sc!, ~5!

if the transverse component of the stress tensorszt is greater
than a critical yield valuesc for fracturing, otherwise no
fracture propagation occurs. We will use the notation (t,n) to
describe, respectively, the transverse and normal direction
any point on the two-dimensional crack interface. Whene
the interface has more than one positions for which vn(s)
does not vanish, we choose the next growth position r
domly with a probability proportional tovn(s) @13,14#.
There we extend the crack by a fixed area of the size of
‘‘process zone’’~and see below for details!. This is similar to
diffusion limited aggregation~DLA ! in which a particle is
grown with a probability proportional to the gradient of th
field. One should note that another model could be derive
which all eligible fracture sites are grown simultaneous
growing a whole layer whose local width isvn(s). This
would be more akin to Laplacian growth algorithms, whi
in general give rise to clusters in a different universality cla
than DLA @15#. Without much extra work we can introduc
other effects of disorder, including quenched disorder in
value ofsc , and other rules for the normal velocity instea
of Eq. ~5!. Such variants of the model will be presente
elsewhere@16#.

In mode III fracture“•u50, and the Lame´ equation re-
duces to Laplace’s equation

]2uz /]x21]2uz /]y250, ~6!

and, therefore,uz is the real part of an analytic function
©2002 The American Physical Society01-1
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x~z!5uz~x,y!1 i jz~x,y!, ~7!

wherez5x1 iy . The boundary conditions far from the crac
and on the crack interface can be used to find this ana
function. It should be stated here that mode I and mod
fractures can be reduced to a bi-Laplacian equation, then
needs to determinetwo rather than one analytic functions
How to accomplish a growth model using iterated conform
maps for those cases will be shown in a forthcoming pu
cation @16#.

Far from the crack asy→6` we knowszy→s` or using
the stress/strain relationships Eq.~3! we find that uz
'@s` /m#y. Thus, the analytic function must have the for
@17#

x~z!→2 i @s` /m#z as uzu→`. ~8!

Now on the boundary of the crack the normal stress v
ishes, i.e.,

05szn~s!5]nuz52] tjz . ~9!

Since jz is constant on the boundary, we choosejz50,
which in turn is a boundary condition making the analy
function x(z) real on the boundary of the crack,

x„z~s!…5x„z~s!…* . ~10!

The direct determination of the strain tensor for an ar
trary shaped~and evolving! crack is still difficult. We, there-
fore, proceed by turning to a mathematical complex planev,
in which the crack is forever circular and of unit radius. T
strain field for such a crack is well known, being the real p
of the functionx (0)(v) where

x (0)~v!52 i @s` /m#~v21/v!. ~11!

This is the unique analytic function obeying the bounda
conditionsx (0)(v)→2 i @s` /m#v as uvu→`, while on the
unit circle x (0)

„exp(iu)…5x (0)
„exp(iu)…* .

Now invoke a conformal mapz5F (n)(v) that maps the
exterior of unit circle in the mathematical planev to the
exterior of the crack in the physical planez, after n growth
steps. This conformal map is univalent by construction, a
therefore, admits a Laurent expansion

F (n)~v!5F1
(n)v1F0

(n)1F21
(n) /v1F22

(n) /v21•••. ~12!

Then the required analytic functionx (n)(z) is given by the
expression

x (n)~z!52 i @F1
(n)s` /m#@F (n)21~z!21/F (n)21~z!#.

~13!

From this we should compute now the transverse st
tensor,
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szt~s!5m] tuz5m Re
]x (n)~z!

]s
5m ReF]x (n)

„F (n)~eiu!…

]u

]u

]sG

52ReF iF 1
(n)s`

]

]u
~eiu2e2 iu!

uF8(n) ~eiu!u
G

52s`F1
(n) cosu

uF8(n) ~eiu!u
, ~14!

on the boundary.
Finally we describe howF (n)(v) is obtained. Suppose

that F (n21)(v) is known, withF (0)(v) being the identity,
F (0)(v)5v. We first compute the transverse strain tens
szt(u)52s`F1

(n21)(cosu)/uF8(n21) (e2iu)u. In order to grow
according to the requirement~5!, we should choose growth
sites more often whenDs(u)[szt(u)2sc is larger. We,
therefore, construct a probability densityP(u) on the unit
circle eiu, which satisfies

P~u!5
uF8(n21) ~eiu!uDs~u!Q„Ds~u!…

E
0

2p

uF8(n21) ~ei ũ !uDs~ũ!Q„Ds~ũ!…dũ

, ~15!

where Q„Ds( ũ)… is the Heaviside function, and
uF8(n21) (eiu)u is simply the Jacobian of the transformatio
from mathematical to physical plane. The next growth po
tion un in the mathematical plane, is chosen randomly w
respect to the probabilityP(u)du. At the chosen position on
the crack, i.e.,z5F (n21)(eiun), we want to advance the
crack with a region whose area is the typical process zone
the material that we analyze. According to@4# the typical
scale of the process zone isK2/sc

2 , whereK is a character-
istic fracture toughness parameter. Denoting the typicalarea
of the process zone byl0, we achieve growth with an aux
iliary conformal mapfln ,un

(v) that maps the unit circle to a

unit circle with a bump of arealn centered ateiun. An ex-
ample of such a map is given by@8#

fl,0~w!5wH ~11l!

2w
~11w!F11w1w

3S 11
1

w2
2

2

w

12l

11l D 1/2G21J a

, ~16!

fl,u~w!5eiufl,0~e2 iuw!. ~17!

Here the bump has an aspect ratioa, 0<a<1. In our work
below we usea52/3. To ensure a fixed size step in th
physical domain we choose

ln5
l0

uF (n21)8~eiun!u2
. ~18!

Finally the updated conformal mapF (n) is obtained as
1-2
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F (n)~v!5F (n21)
„fln ,un

~v!…. ~19!

The recursive dynamics can be represented as iteration
the mapfln ,un

(w),

F (n)~w!5fl1 ,u1
+fl2 ,u2

+•••+fln ,un
~v!. ~20!

Every given fracture is determined completely by the ra
dom itinerary$u i% i 51

n . Eq. ~14! together with Eq.~20! offer
an analytic expression for the transverse stress field at
stage of the crack propagation.

Figure 1 exhibits a typical fracture pattern that is obtain
with this theory, withs`51, after 10 000 growth events
The threshold value ofsc for the occurrence of the firs
event@cf. Eq. ~14!# is sc52. We always implement the firs
event. For the next growth event the threshold issc
52.9401 . . . . We,thus, display in Fig. 1 a cluster obtained
with sc52.94, to be as close as possible to the quasist
limit. Note that here we could opt to represent a disorde
material by a random value ofsc @16#. With fixed sc , one
should observe that as the pattern develops, the stress a
active zone increases, and we get progressively away f
the quasistatic limit. Indeed, as a result of this, for fix
boundary conditions at infinity, there are more and more v
ues ofu for which Eq.~15! does not prohibit growth. Since
the tips of the patterns are mapped byF (n)21 to larger and
larger arcs on the unit circle, the support of the probabi
P(u) increases, and the fracture pattern becomes more
more ramified as the process advances. The geometric
acteristics of the fracture pattern arenot invariant to the
growth. For this reason it makes little sense to measure
fractal dimension of the pattern, this is not a stable char
teristic, and it will change with the growth. On the oth
hand, we should realize that the fracture pattern is not wh
observed in typical experiments. When the fracture hits
boundaries of the sample, and the sample breaks into
parts, all the side branches of the pattern remain hidde
the damaged material, and only the backbone of the frac

FIG. 1. A typical fracture pattern that is obtained from iterat
conformal maps. What is seen is the boundary of the fractured z
which is the mapping of the unit circle in the mathematical dom
onto the physical domain. Notice that the pattern becomes more
more ramified as the the fracture pattern develops. This is due to
enhancement of the stress field at the tips of the growing patte
04510
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pattern appears as the surface of the broken parts. The b
bone does not suffer from the geometric variability discus
above. In Fig. 2 we show the backbone of the pattern d
played in Fig. 1. This backbone is representative of all
fracture patterns. We should note that in our theory there
no lateral boundaries, and the backbone shown does not
fer from finite size effects that may very well exist in expe
mental realizations.

In determining the roughness exponent of the backbo
we should note that a close examination of it reveals thatit is
not a graph. There are overhangs in this backbone, and si
we deal with mode III fracturing, the two pieces of mater
can separate leaving these overhangs intact. Accordin
one should not approach the roughness exponent using
relation function techniques, these may introduce serious
rors when overhangs exist@18#. Rather, we should measure
for any givenr, the quantity@19#

h~r ![^max$y~r 8!%x,r 8,x1r2min$y~r 8!%x,r 8,x1r&x .
~21!

The roughness exponentz is then obtained from

h~r !;r z, ~22!

if this relation holds. To get good statistics we average,
addition to allx for the same backbone, over many fractu
patterns. The result of the analysis is shown in Fig. 3.

We find that the roughness exponent for the backb
exhibits a clear crossover from 0.54 for shorter distancesr to
0.75 for larger distances. Within the error bars these res
are in a surprising agreement with the numbers quoted
perimentally, see, for example,@19#. The short length scale
exponent of order 0.5 is also in agreement with recent sim
lational results of a lattice model@7# ~which is by definition
a short length scale solution!. Bouchaud@19# proposed that
the crossover stems from transition between slow and ra
fracture, from the ‘‘vicinity of the depinning transition’’ to
the ‘‘moving phase’’ in her terms. Obviously, in our theo
we solve the quasistatic equation all along, and there is
change of physics. Nevertheless, as we observed before

e,
n
nd
he
.

FIG. 2. A typical backbone of the fracture pattern. This is t
projection onto thex-y plane of the experimentally observe
boundary between the two parts of the material that separate w
the fracture pattern hits the lateral boundaries.
1-3
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fracture pattern begins with very low ramification when t
stress field exceeds the threshold value only at few posit
on the fracture interface. Later it evolves to a much m
ramified pattern due to the increase of the stress fields a
tips of the mature pattern.The scaling properties of the back
bone reflect this crossover. We propose that this effect i

FIG. 3. h(r ) averaged over all the backbone and over 70 fr
ture patterns each of which is 10 000 fracture events. There
crossover between a scaling law with roughness exponent
60.05 to and exponent of 0.7560.02.
al
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responsible for the crossover in the roughening exponen
the backbone. We are not in a position to claim that
correspondence in roughening exponents indicates that m
III is in the same universality class as the experiment. In fa
the analysis of@20# indicates that mode III is not in the sam
universality class as mode I and II. It is not impossible ho
ever that the mechanism for the crossover in expone
~when it occurs! is similar in all cases.

We have, thus, demonstrated that iterated conformal m
offer an efficient method for studying fracture patterns. He
we considered only mode III quasistatic patterns. The the
for mode I and mode II is available and will be present
elsewhere@16#. The generalization to dynamical scaling,
which Eq.~1! is considered including the time derivatives
akin to the transition from electrostatics to electrodynami
This is still an attractive goal for the road ahead.
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