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Quasistatic fractures in brittle media and iterated conformal maps
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We study the geometrical characteristic of quasistatic fractures in brittle media, using iterated conformal
maps to determine the evolution of the fracture pattern. This method allows an efficient and accurate solution
of the Lameequations without resorting to lattice models. Typical fracture patterns exhibit increased ramifi-
cation due to the increase of the stress at the tips. We find the roughness exponent of the experimentally
relevant backbone of the fracture pattern, it crosses over from about 0.5 for small scales to about 0.75 for large
scales. We propose that this crossover reflects the increased ramification of the fracture pattern.
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A considerable amount of theoretical wdrk—3] on frac- Although we can develop the approach in the full gener-
ture in brittle media is based on attempts to solve the equaality of Eq. (4), for the sake of clarity in this paper we will
tion of motion for an isotropic elastic body in the continuum consider mode 11l fracturing for which a three-dimensional

limit elastic medium is subjected to a finite shear steegs-o-.
asy— +oo. Such an applied stress will create a displacement
J9%u field u,(x,y), uy=0, u,=0 in the medium. Despite the me-
PEI(WFM)V(V'UHMVZU- (1) dium being three dimensional, therefore, the calculation of

the strain and stress tensors are two dimensional.
We can describe a crack of arbitrary shape by its interface
§<(s), wheres is the arc length, which is used to parametrize

Somt_ fro;ph its location in adn)\unstrarl]necLi body apdis thf the contour. We wish to develop a quasistatic mdde|13
ensity. The constanig an are the Lameconstants. In .for the time development of this fracture in which discrete

terms of the displacement field the elastic strain tensor iSvents advance the interface with a normal velocity
defined as

(9Ui L?UJ
JR— + _
(7XJ' X

Un(s):a(|0'zt(5)|_0'c): 5
)- 2

if the transverse component of the stress temsgis greater
than a critical yield values,. for fracturing, otherwise no
For the development of a crack the important object is thgracture propagation occurs. We will use the notatign) to
stress tensor, which in linear elasticity is written as describe, respectively, the transverse and normal directions at
any point on the two-dimensional crack interface. Whenever
the interface has more than one posit®for which v,(s)
does not vanish, we choose the next growth position ran-
domly with a probability proportional taw,(s) [13,14.
When the stress component, which is transverse to the intef-here we extend the crack by a fixed area of the size of the
face of a crack, exceeds a threshold vaite the crack can “process zone’(and see below for detajlsThis is similar to
develop. When the external load is such that the transvergéffusion limited aggregatiofDLA) in which a particle is
stress exceeds only slightly the threshold value, the cracgrown with a probability proportional to the gradient of the
develops slowly, and one can neglect the second time derivdield. One should note that another model could be derived in
tive in Eq. (1). This is the quasistatic limit, in which after which all eligible fracture sites are grown simultaneously,
each growth event one needs to recalculate the strain field klgrowing a whole layer whose local width is,(s). This

0'”5)\5”; Ekk+2,u6ij. (3)

solving the Lameequation would be more akin to Laplacian growth algorithms, which
in general give rise to clusters in a different universality class
AN+ w)V(V-u)+uV?u=0. (4)  than DLA[15]. Without much extra work we can introduce

other effects of disorder, including quenched disorder in the
In many previous works the problem was approached byalue ofo¢, and other rules for the normal velocity instead
discretizing Eqs(1) and(4) on a lattice[4—7]. In this paper of Eq. (5). Such variants of the model will be presented
we offer a different approach based on iterated conformaglsewherd16].
maps, this method turned out to be very useful in the context In mode IlI fractureV -u=0, and the Lamequation re-
of fractal growth pattern$8—11] and it appears advanta- duces to Laplace’s equation
geous also for the present problem.

J%u,19x%+ d%u,ly*=0, (6)

*Also at Department of Physics, Emory University, Atlanta, GA. and, thereforey, is the real part of an analytic function
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X(2)=Uy(x,y) +i&(XY), (7) a2 [ax™M @) 90
02(S) = pou= u Re——=pRg ————— —

wherez=x+iy. The boundary conditions far from the crack

and on the crack interface can be used to find this analytic iEM i(e”’—e“")

function. It should be stated here that mode | and mode II 1 7=00

fractures can be reduced to a bi-Laplacian equation, then one =—Re |’ ™ (&%)

needs to determinéwvo rather than one analytic functions.

How to accomplish a growth model using iterated conformal cosé

maps for those cases will be shown in a forthcoming publi- =2¢TOCF(1”)—., (14

cation[16]. @™ (&)

Far from the crack ag— * « we knowo,,— o, or using
the stress/strain relationships E¢3) we find thatu, ©n the boundary.

~[o../r]y. Thus, the analytic function must have the form Finallylwe describe hom@(”)(%)) is obtained. Suppose
[17] that ®("V(w) is known, with®®(w) being the identity,

®O)(w)=w. We first compute the transverse strain tensor
o(0)=20,F{" (cosh)/|d' ™ (e7)|. In order to grow
according to the requiremeK®), we should choose growth
sites more often whedo(0)=0,(6)— o is larger. We,
therefore, construct a probability densi®(6) on the unit

)((Z)—>—i[a'w/,u]2 as |Z|—>OO. (8)

Now on the boundary of the crack the normal stress van

ishes, i.e., circle €'?, which satisfies
0=0n(S) = dpU,= — 0, C) D' ("D (&) Ac(6)O(Ac(0))
P(0)=— - , (15
Since ¢, is constant on the boundary, we choogg=0, f | (") (el )|Ac(0)O(Ac(6))dB
0

which in turn is a boundary condition making the analytic
function x(z) real on the boundary of the crack, _
where O(Ac(6)) is the Heaviside function, and
@(S) = x(@(8)* . 1o |®'"Y ()] is simply the Jacobian of the transformation
from mathematical to physical plane. The next growth posi-
The direct determination of the strain tensor for an arbi—tlon O In the mathem."’.‘“ca' plane, is chosen randpmly with
) AR, respect to the probabiliti?(#)d 6. At the chosen position on
trary shapedand evolving crack is still difficult. We, there- h K i — (Dl d h
fore, proceed by turning to a mathematical complex plane the crack, 1.e.,z= (e, we want to advance the
oot ) ; : . crack with a region whose area is the typical process zone for
in which the crack is forever circular and of unit radius. The . d :

o . : the material that we analyze. According [i¢] the typical
strain field for such a crack is well known, being the real part 2 .
of the functiony©(w) where scale of the process zoneKg/o?, whereK is a character-

X istic fracture toughness parameter. Denoting the tyEioed
of the process zone hy,, we achieve growth with an aux-
iliary conformal mapgp, ,0n(“’) that maps the unit circle to a

. . ) , ) unit circle with a bump of area, centered ae'’n. An ex-
This is the unique analytic function obeying the boundaryamme of such a map is given 1§]

conditionsy(®(w)— —i[ 0., /u]w as|w|—, while on the
unit circle y(©(exp(6))= x©(exp(6))*.

Xw)=—i[o./ pn](w—1lw). (1)

Now invoke a conformal map=®("(w) that maps the N o(W):W| (A+™) (1+w)|1+w+w
exterior of unit circle in the mathematical plane to the ' 2w
exterior of the crack in the physical plazeafter n growth 12 a
steps. This conformal map is univalent by construction, and, %11 i_ E 1__)\ _ 1} (16)
therefore, admits a Laurent expansion w2 w1+ '
PM(w)=FMw+F"+F"/ 0+F "/ w?+. ... (12 by (W) =€, o(e” "W). (17

Then the required analytic functiop™(z) is given by the Here the bump has an aspect ratjc0<a=<1. In our work
expression below we usea=2/3. To ensure a fixed size step in the

physical domain we choose
X(2)==i[FPo. p][ @M Y(2) - LD~ Y(2)]. N
(13 N=— 0 (18)
n |q)(n—l)/(ei6n)|2'
From this we should compute now the transverse stress
tensor, Finally the updated conformal map(™ is obtained as
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FIG. 1. A typical fracture pattern that is obtained from iterated FIG. 2. A typical backbone of the fracture pattern. This is the
conformal maps. What is seen is the boundary of the fractured zong@yojection onto thex-y plane of the experimentally observed
which is the mapping of the unit circle in the mathematical domainboundary between the two parts of the material that separate when
onto the physical domain. Notice that the pattern becomes more arttie fracture pattern hits the lateral boundaries.
more ramified as the the fracture pattern develops. This is due to the
enhancement of the stress field at the tips of the growing pattern.pattern appears as the surface of the broken parts. The back-

bone does not suffer from the geometric variability discussed

PV ()= V(gp, , (w)). (190  above. In Fig. 2 we show the backbone of the pattern dis-

e played in Fig. 1. This backbone is representative of all the

The recursive dynamics can be represented as iterations &acture patterns. We should note that in our theory there are

the mapg, 4 (W), no lateral boundaries, and the backbone shown does not suf-
fer from finite size effects that may very well exist in experi-
DM(W) =y 9,°Pr, 0,07 bn, 0, (@). (200  mental realizations.

In determining the roughness exponent of the backbone,

Every given fracture is determined completely by the ran-we should note that a close examination of it revealsithat
dom itinerary{ 6;}_, . Eq.(14) together with Eq(20) offer ~ not a graph There are overhangs in this backbone, and since
an analytic expression for the transverse stress field at ariye deal with mode IlI fracturing, the two pieces of material
stage of the crack propagation. can separate leaving these overhangs intact. Accordingly,

Figure 1 exhibits a typical fracture pattern that is obtainedone should not approach the roughness exponent using cor-
with this theory, witho,.=1, after 10000 growth events. relation function techniques, these may introduce serious er-
The threshold value ofr, for the occurrence of the first rors when overhangs exikt8]. Rather, we should measure,
event[cf. EqQ.(14)] is o.=2. We always implement the first for any givenr, the quantity{19]
event. For the next growth event the threshold dasg , _ ,
—2.940L . ... We,thus, display in Fig1 a cluster obtained ~ N(N={Maxy(r")herr <= MIN{Y(r ) heerr <t )
with o.=2.94, to be as close as possible to the quasistatic (22)
limit. Note that here we could opt to represent a disorderegrp,o roughness exponetis then obtained from
material by a random value af. [16]. With fixed o, one
should observe that as the pattern develops, the stress at the h(r)~r¢, (22)
active zone increases, and we get progressively away from
the quasistatic limit. Indeed, as a result of this, for fixedif this relation holds. To get good statistics we average, in
boundary conditions at infinity, there are more and more valaddition to allx for the same backbone, over many fracture
ues of @ for which Eq.(15) does not prohibit growth. Since patterns. The result of the analysis is shown in Fig. 3.
the tips of the patterns are mapped &Y~ to larger and We find that the roughness exponent for the backbone
larger arcs on the unit circle, the support of the probabilityexhibits a clear crossover from 0.54 for shorter distamdes
P(6) increases, and the fracture pattern becomes more arfid75 for larger distances. Within the error bars these results
more ramified as the process advances. The geometric chare in a surprising agreement with the numbers quoted ex-
acteristics of the fracture pattern amet invariant to the perimentally, see, for examplgl9]. The short length scale
growth. For this reason it makes little sense to measure thexponent of order 0.5 is also in agreement with recent simu-
fractal dimension of the pattern, this is not a stable characlational results of a lattice mod€¥] (which is by definition
teristic, and it will change with the growth. On the other a short length scale solutipnBouchaud 19] proposed that
hand, we should realize that the fracture pattern is not what ithe crossover stems from transition between slow and rapid
observed in typical experiments. When the fracture hits thdracture, from the “vicinity of the depinning transition” to
boundaries of the sample, and the sample breaks into twihe “moving phase” in her terms. Obviously, in our theory
parts, all the side branches of the pattern remain hidden iwe solve the quasistatic equation all along, and there is no
the damaged material, and only the backbone of the fracturehange of physics. Nevertheless, as we observed before, the
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responsible for the crossover in the roughening exponent of
the backbone. We are not in a position to claim that the
correspondence in roughening exponents indicates that mode
IIl'is in the same universality class as the experiment. In fact,
the analysis of20] indicates that mode Il is not in the same
universality class as mode | and Il. It is not impossible how-
ever that the mechanism for the crossover in exponents
(when it occurgis similar in all cases.

We have, thus, demonstrated that iterated conformal maps
offer an efficient method for studying fracture patterns. Here
we considered only mode Il quasistatic patterns. The theory

100}

h(r) [
10}

ST T T 00 %00 for mode | and mode Il is available and will be presented

r elsewherd 16]. The generalization to dynamical scaling, in
which Eq.(1) is considered including the time derivatives is
kin to the transition from electrostatics to electrodynamics.
his is still an attractive goal for the road ahead.

FIG. 3. h(r) averaged over all the backbone and over 70 frac-
ture patterns each of which is 10000 fracture events. There is
crossover between a scaling law with roughness exponent 0.5

*+0.05 to and exponent of 0..02. We are indebted to S. Ciliberto for getting us interested in

this problem and to J. Fineberg for some very useful discus-
fracture pattern begins with very low ramification when thesions. This work had been supported in part by the Petroleum
stress field exceeds the threshold value only at few positionResearch Fund, the European Commission under the TMR
on the fracture interface. Later it evolves to a much moregorogram, and the Naftali and Anna Backenroth-Bronicki
ramified pattern due to the increase of the stress fields at tHeund for Research in Chaos and Complexity. A.L. was finan-
tips of the mature patterihe scaling properties of the back- cially supported by the Minerva Foundation, Munich, Ger-
bone reflect this crossovekVe propose that this effect is many.
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